Measuring cosmic structure
Beschreibung
vor 23 Jahren
In der heutigen Kosmologie werden Inhomogenitäten und
Unregelmäßigkeiten in den relevanten Datensätzen wie etwa die
Substruktur in Galaxienhaufen und die Tatsache, daß verschiedene
Galaxientypen unterschiedlich im Raum verteilt sind, nicht mehr nur
als zufällige Fluktuationen interpretiert, sondern für ein
Verständnis der kosmischen Materieverteilung positiv nutzbar
gemacht. Die vorliegende Arbeit entwickelt in diesem Sinne Maße,
welche eine quantitative Beschreibung von solchen Inhomogenitäten
liefern, wendet sie sowohl auf Realdaten als auch auf numerische
Simulationen an und stellt den Zusammenhang zu physikalischen
Modellen her. Die Integralgeometrie stellt Maße zur Verfügung, die
sich unter geometrischen Transformationen und Mengenoperationen in
einfacher Weise verhalten. Während bislang in der Kosmologie vor
allem die skalaren Minkowski–Funktionale angewandt wurden, um die
kosmische Materieverteilung zu charakterisieren, stehen im ersten
Teil dieser Arbeit höherrangige Minkowski–Valuationen wie die
Quermaßvektoren und –tensoren im Vordergrund. Diese spiegeln die
Lage, Symmetrie, Gestalt und Konnektivität von Mustern wider.
Zunächst werden diese Maße für physikalische Anwendungsbereiche
erschlossen. Die Anwendungen gelten dann Galaxienhaufen
(“Clustern”), deren innere Eigenschaften auch dazu geeignet sind,
die Werte der kosmologischen Parameter einzuschränken. Mit Hilfe
der Minkowski–Valuationen definieren wir eine Reihe von
Strukturfunktionen, die sich speziell dazu eignen, Galaxienhaufen
morphologisch zu charakterisieren. Eine Analyse von Clustern, die
kosmologischen Dunkle–Materie–Simulationen entstammen (dem
sogenannten GIF–Projekt der “German–Israelic Foundation”), zeigt,
daß der morphologische Zustand von Galaxienhaufen zwischen
verschiedenen kosmologischen Hintergrundmodellen unterscheiden
kann. Eine weitere Analyse gilt komplexeren Simulationen, die auch
das heiße Cluster–Röntgengas berücksichtigen. Dabei vergleichen wir
nicht nur die Gas– und die Dunkle–Materie–Morphologie, sondern
untersuchen auch den Zusammenhang mit der inneren Dynamik. In
geeigneten Räumen von globalen Clusterparametern entstehen
fundamentale Abhängigkeiten wie etwa die Fundamentalebenenrelation.
Dabei können wir zeigen, daß der Abstand von der Fundamentalebene,
der die Entfernung von einem Gleichgewichtszustand angibt, mit der
Substruktur der Galaxienhaufen positiv korreliert ist; mithin
spiegelt die Substruktur den inneren dynamischen Zustand eines
Clusters. Weiterhin wird gezeigt, daß die Morphologie von
Galaxienhaufen auch im Optischen (d.h. in der Verteilung der
Clustergalaxien) die Hintergrundkosmologie widerspiegelt. Dazu
analysieren wir die Verteilung von Cluster–Galaxien, welche
semianalytischen Modelle für die GIF–Simulationen vorhersagen, und
Realdaten. Eine Grundfrage der modernen Kosmologie gilt der Art und
Weise, wie die Dunkle Materie hinter dem Vordergrund der sichtbaren
Galaxien im Universum verteilt ist (“Bias”–Problem). Wegen der
Schwierigkeiten, die Dunkle Materie zu lokalisieren, sind dabei
schon Unterschiede von Interesse, die sich etwa in der räumlichen
Verteilung unterschiedlicher Galaxientypen finden. Der zweite Teil
der Arbeit beschäftigt sich mit einem neuen Ansatz, solche
Unterschiede zu quantifizieren. Dabei versteht man die
Galaxienverteilung als Realisation eines markierten Punktprozesses,
der neben den Positionen im Raum auch innere Eigenschaften der
Galaxien wie Leuchtkräfte oder morphologische Typen erzeugt. Diese
Beschreibung ermöglicht es, eine Reihe von Größen einzuführen, mit
denen man testen kann, ob eine Markensegregation vorliegt, das
heißt, ob das räumliche Clustern der Galaxien von deren inneren
Eigenschaften abhängt. Solche Testgrößen – wir beziehen uns dabei
hauptsächlich auf Statistik zweiter Ordnung – zeigen, angewandt auf
den Southern Sky Redshift Survey II, signifikante Leuchtkraft– und
Morphologie–Segregation an. Ein Vergleich mit Modellen zeigt die
komplexe Natur dieser Leuchtkraft–Segregation, die insbesondere
nicht auf die Morphologie–Dichte–Relation zurückzuführen ist.
Unregelmäßigkeiten in den relevanten Datensätzen wie etwa die
Substruktur in Galaxienhaufen und die Tatsache, daß verschiedene
Galaxientypen unterschiedlich im Raum verteilt sind, nicht mehr nur
als zufällige Fluktuationen interpretiert, sondern für ein
Verständnis der kosmischen Materieverteilung positiv nutzbar
gemacht. Die vorliegende Arbeit entwickelt in diesem Sinne Maße,
welche eine quantitative Beschreibung von solchen Inhomogenitäten
liefern, wendet sie sowohl auf Realdaten als auch auf numerische
Simulationen an und stellt den Zusammenhang zu physikalischen
Modellen her. Die Integralgeometrie stellt Maße zur Verfügung, die
sich unter geometrischen Transformationen und Mengenoperationen in
einfacher Weise verhalten. Während bislang in der Kosmologie vor
allem die skalaren Minkowski–Funktionale angewandt wurden, um die
kosmische Materieverteilung zu charakterisieren, stehen im ersten
Teil dieser Arbeit höherrangige Minkowski–Valuationen wie die
Quermaßvektoren und –tensoren im Vordergrund. Diese spiegeln die
Lage, Symmetrie, Gestalt und Konnektivität von Mustern wider.
Zunächst werden diese Maße für physikalische Anwendungsbereiche
erschlossen. Die Anwendungen gelten dann Galaxienhaufen
(“Clustern”), deren innere Eigenschaften auch dazu geeignet sind,
die Werte der kosmologischen Parameter einzuschränken. Mit Hilfe
der Minkowski–Valuationen definieren wir eine Reihe von
Strukturfunktionen, die sich speziell dazu eignen, Galaxienhaufen
morphologisch zu charakterisieren. Eine Analyse von Clustern, die
kosmologischen Dunkle–Materie–Simulationen entstammen (dem
sogenannten GIF–Projekt der “German–Israelic Foundation”), zeigt,
daß der morphologische Zustand von Galaxienhaufen zwischen
verschiedenen kosmologischen Hintergrundmodellen unterscheiden
kann. Eine weitere Analyse gilt komplexeren Simulationen, die auch
das heiße Cluster–Röntgengas berücksichtigen. Dabei vergleichen wir
nicht nur die Gas– und die Dunkle–Materie–Morphologie, sondern
untersuchen auch den Zusammenhang mit der inneren Dynamik. In
geeigneten Räumen von globalen Clusterparametern entstehen
fundamentale Abhängigkeiten wie etwa die Fundamentalebenenrelation.
Dabei können wir zeigen, daß der Abstand von der Fundamentalebene,
der die Entfernung von einem Gleichgewichtszustand angibt, mit der
Substruktur der Galaxienhaufen positiv korreliert ist; mithin
spiegelt die Substruktur den inneren dynamischen Zustand eines
Clusters. Weiterhin wird gezeigt, daß die Morphologie von
Galaxienhaufen auch im Optischen (d.h. in der Verteilung der
Clustergalaxien) die Hintergrundkosmologie widerspiegelt. Dazu
analysieren wir die Verteilung von Cluster–Galaxien, welche
semianalytischen Modelle für die GIF–Simulationen vorhersagen, und
Realdaten. Eine Grundfrage der modernen Kosmologie gilt der Art und
Weise, wie die Dunkle Materie hinter dem Vordergrund der sichtbaren
Galaxien im Universum verteilt ist (“Bias”–Problem). Wegen der
Schwierigkeiten, die Dunkle Materie zu lokalisieren, sind dabei
schon Unterschiede von Interesse, die sich etwa in der räumlichen
Verteilung unterschiedlicher Galaxientypen finden. Der zweite Teil
der Arbeit beschäftigt sich mit einem neuen Ansatz, solche
Unterschiede zu quantifizieren. Dabei versteht man die
Galaxienverteilung als Realisation eines markierten Punktprozesses,
der neben den Positionen im Raum auch innere Eigenschaften der
Galaxien wie Leuchtkräfte oder morphologische Typen erzeugt. Diese
Beschreibung ermöglicht es, eine Reihe von Größen einzuführen, mit
denen man testen kann, ob eine Markensegregation vorliegt, das
heißt, ob das räumliche Clustern der Galaxien von deren inneren
Eigenschaften abhängt. Solche Testgrößen – wir beziehen uns dabei
hauptsächlich auf Statistik zweiter Ordnung – zeigen, angewandt auf
den Southern Sky Redshift Survey II, signifikante Leuchtkraft– und
Morphologie–Segregation an. Ein Vergleich mit Modellen zeigt die
komplexe Natur dieser Leuchtkraft–Segregation, die insbesondere
nicht auf die Morphologie–Dichte–Relation zurückzuführen ist.
Weitere Episoden
vor 20 Jahren
In Podcasts werben
Kommentare (0)